જો ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (જ્યાં $i = \sqrt{-1}),$ હોય તો $x_1.x_2.x_3......\infty ,$ ની કિમત મેળવો
$1$
$-1$
$-i$
$i$
$6 + 66 + 666 + …..(n $ પદ સુધી $) = ….$
$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?
જો ${\text{r}}\,\, > \,\,{\text{1}}$ અને ${\text{x}}\, = \,\,{\text{a}}\, + \,\frac{a}{r}\, + \,\frac{a}{{{r^2}}}\, + \,..\,\,\infty ,\,\,y\, = \,b\, - \,\frac{b}{r}\, + \,\frac{b}{{{r^2}}} - \,..\,\,\,\infty $ અને ${\text{z}}\,\, = \,\,{\text{c}}\, + \,\frac{{\text{c}}}{{{{\text{r}}^{\text{2}}}}}\, + \,\frac{c}{{{r^4}}}\, + \,\,\,\infty ,\,$ હોય, તો $\frac{{{\text{xy}}}}{{\text{z}}}\,\, = \,...$
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ અને દરેક પદ તેના પછીના પદોના સરવાળા જેટલું હોય, તો તેનું ચોથું પદ કયું હશે ?